Jonathan Ebersole 235 E. Farimount Ave. Apt. 102 State College, PA 16801

September 25, 2013 Dr. Linda Hanagan Associate Professor 212 Engineering Unit A University Park, Pa 16802

Dear Dr. Hanagan,

This document is developed to help guide you through the evaluation of a typical bay under gravity loads and the evaluation of three alternative framing systems for the Oklahoma University Children's Medical Office Building. The purpose of this assignment is to evaluate a typical bay under gravity loads and to analyze three different structural systems that I could use in my proposal. The document contains a site plan of the building along with a list of codes and documents used to determine the member sizes. The calculations contain the loading, existing member analysis, and three different alternative systems. The calculations are accompanied by sketches of existing and proposed bays. For each of the four systems, I analyzed the flexural strength, the shear strength, and the deflections of each member. A column evaluation was conducted for the existing system. For my three alternative systems, I chose to use non-composite steel, composite steel, and a one way slab with beams.

Sincerely,

Jonathan Ebersole

Table of Contents

1. General Information -2

1.1 Building Abstract – 2

1.2 Executive Summary – 3

1.3 Site Plan – 4

1.4 List of Documents - 4

2. Calculations – 6

2.1 Roof Loads - 6

2.2 Floor Loads - 9

2.3 Exterior Wall Loads - 11

2.4 Non-typical Loads – 12

2.5 Existing Structure – 13

2.6 Alternative System 1 – 29

2.7 Alternative System 2 – 35

2.8 Alternative System 3 – 41

3. Appendix A – 59

OU Children's Medical Office Building

Jonathan Ebersole Structural Option

http://www.engr.psu.edu/ae/thesis/portfolios/2014/jme5193/index.html

Project Team

- Owner: University Hospitals Trust
- Construction Manager: Flintco, Inc.
- Project Architect: Miles Associates
- Design Architect: Hellmuth, Obata, and Kassabaun, Inc.
- Structural Engineer: Zahl-Ford
- MEP Engineer: ZRHD, P.C.
- · Civil Engineer: Smith, Roberts, Baldischwiler, Inc.

General Information

- Location: 1200 North Children's Avenue, Oklahoma City, Oklahoma
- Occupancy: Office
- Size: 320,000 sq. ft.
- Height: 12 Stories for a total of 172 ft.
- Construction Dates: February 2007-Spring of 2009
- Building Cost: \$59,760,000
- Delivery Method: Design-Bid-Build

Architecture

- Exterior Façade comprised of brick Veneer with large glass curtain wall on the front face of the building
- Supports Hospital with additional office space, exam rooms, and labs
- Membrane roof system with rigid insulation and light weight insulating concrete

Structural Design

- Reinforced concrete columns and beams
- 10" thick flat slab system with drop panels
- Concrete shear walls located in elevator shafts and stairwells
- Drilled pier foundation with a minimum bearing capacity of 45 KSF

Mechanical Design

- 7,500 CFM Air Handling unit occupies each floor
- Heat Exchanger is used to heat water before entering the heating coil
- 850 CFM fans are used to pressurize the stairwells

Lighting/Electrical Design

- Service voltage is 480/277 V, three phase, with 4 wires
- Voltage reduced to 120/208V, three phase, with 4 wires and supplied to each panel box
- Fluorescent lamps are used throughout the building to save energy costs

General Information

Executive Summary

OU Children's Medical Office Building is an office building located in Oklahoma. It is situated next to an existing hospital and parking garage. The building houses offices, examination rooms and labs for the expanding OU Children's Hospital. It is the largest free standing clinical office in the state and provides much needed medical services to the children of Oklahoma and their families.

The structure of the building is reinforced concrete. The building uses a flat slab system supported by columns and exterior beams. Drop panels are used at the column locations to provide extra shear and moment capacity to the slab. The columns are supported on piers that transfer the loads to bedrock underneath the building. The building also uses shear walls and moment frames to resist the lateral forces.

This building provides several unique challenges that a typical office building would not otherwise have. These include a parking garage located on the first floor, a future helicopter pad positioned on the roof, and impact loads on lower levels for vehicle collisions with the building. These design parameters will increase the difficulty of future design assignments as all load cases must be analyzed.

Figure A. Building outlined in red.

OU Children's Medical Office Building is located on 1200 N. Children's Avenue Oklahoma City, Oklahoma between Stanton L. Young Blvd and N.E. 13th Street. (Refer to figure A for site and building footprint). The building is twelve stories above grade and is approximately 180 feet tall. The building footprint is 22,820 square feet with a total area of 320,000 square feet. The building is positioned between an existing hospital and existing parking structure. A large atrium connects the hospital to the office building and parking structure but it is a future addition and not part of the original office construction. The building is located in an urbanized area which will later impact the design for the lateral loads.

List of Documents

For this assignment, several documents where used in order to evaluate and design the required members. The ACI 318-02 code was used to analyze the existing structure, whereas, the ACI 318-11 was used to design the one way slab and beams in one of my

alternative systems. I also used examples and design aids from the sixth edition of *Reinforced Concrete Mechanics and Design* written by James Wight and James MacGregor. To design the composite decking found in two of my alternative systems, I used the Vulcraft deck catalog. To determine the member sizes for these two systems, the fourteenth edition of the AISC Steel Construction Manual was used. Notes from AE 401, AE 402, AE 403 and AE 431 were also used.

		2-2
	Show Locks	
	Flat Roof Snow Loads (AS(5.7-02)	
	slope = 1/4" per foot 25° slope = fits criteria	
	pf=0.7 Ce C+ Ipg	
	Le= 1.0	
	I = hO	
8	re- 10 pst	
Man	pt= 0.7. 10 . 1.1. 1.0. 10 pst = 7.7 pst	
X	but not less than :	
	pg is 20 psf or uss	
	pt= I(pg) = 1.0.10=10 psf -> controls	
-	Show Drift Loads	
	Parapet	
~	1 = 91,29F1	
	he= 4.003 to	
	1=0(13+4=14=0(13-10=14=15-3 pct.)	
	w= 4 nd = 4 12 55 10 ft	
	hc/ho= 4.683/0.65=72 > 0.2 is must be appli	ed
	pd= 3/4 hdd= 3/4, 2.5, 15:3= 28:69 psf [wind word]	
	pd.o.s. w= 28.69.0.5.10=143,45 plf	
	Load combinations	
	12 D+ OIS L+ OrS	
	12Da Martices	
	Lomporent	
_	Stale	
	Line Lord - 20 psf > 5=10 pst Dead Lord - 1640 psf	

n V eft

2-3 we= 1.2(166) + 1.(2. (20)= 231.2 psf) wu= 1,21164 + 0,5(20) = 209,2 psf Column Live Lood - 20 pst lunreducable Dead Lood - 178 pst · wu=1,2(178)+1.(20)=[245.6 psf] wwshiz(178)+0.5(20)=223.4 psf anny

2-5 wu=1,2(142)+1,6(80)=298,4 psp column Live Load - 80 psf -100 L= 80 . 0.4 $\max \left[0.25 + \sqrt{4 \cdot 26 \cdot 32} \right] = 0.51 \cdot 60 = 40.8 \text{ psf} \\ 5 3326 > 400 \text{ Oh} \sqrt{100}$ Dead Load - 162 pst Summer of Wu= 1.2. 162+ 1.6. 40.8 = 259.7 psf

×.

$$k_{0} = 9 \cdot 92.5 : 170 in$$

$$2^{4}\frac{y}{A} = 2^{4}\frac{y}{h^{2}2} \le 5.25$$

$$B = \frac{52}{52} = 1.23$$

$$\frac{0.5 \cdot 4}{A} + 2 = \frac{90 \cdot 12.5}{170} + 12 \cdot 4.94$$

$$B^{1}V(z = 8 \cdot 9 \cdot 1) F(z = bo d : 0.75 \cdot 4.10 \cdot 1000 \cdot 170 \cdot 12.5 \cdot 450.8 \text{ Mys}$$

$$B^{1}V(z = 8 \cdot 9 \cdot 1) F(z = bo d : 0.75 \cdot 4.10 \cdot 1000 \cdot 170 \cdot 12.5 \cdot 450.8 \text{ Mys}$$

$$B^{1}V(z = 0.14 \cdot 1) F(z = b = 0.15 \cdot 5.0 \cdot 9) = 220.78 \text{ Mys}$$

$$b_{0} = 2 \cdot (120 \cdot 6.0) + 2 \cdot (88 \cdot 8.5) = 4/6 \sin$$

$$B^{1}V(z = 0 \cdot 12.5 \cdot 10.9 \cdot 100 \cdot$$

2-12 Investigate shear strength at critical section bo . located at d/2 from the edge of the drop panel. Vu= 0.2984 (32.26 - 11.375.8.375)= 219.8 hips bo=2.(128+8.5)+2.(92+8.5)=474 $\frac{2+4}{B} = \frac{2+4}{1\sqrt{23}} = 5.25$ 0.3.4 + 2 = 40.8.5 + 2 = 2.72 bo GNEWS min 4 OVC= 0 05. d+2 XVFE bod=0.75.2.72.1.1500.474.8.5 = 581.2 kips ave > Vu Sel, 2 hips > 219.8 hips Oh

Page | 18

	2-14
	Determine moments along gridline B between grids. 2 and 3 (some as moments along gridline C) Compute Mo: Mo = au 1 - 1 m ²
"Ci káli	$gu = 290.4 psf$ $L_2 = 32.4t = 0$ $In = 2u^{1} - \frac{30}{12}$ $In = \frac{290.4 \cdot 32 \cdot 231.5^{2}}{3} = 659.2 \text{ ft} \cdot \text{K}$
R.	Note the into regalize and positive moments: Negative moment = -0.65 Mo = -428,48 Ft.K Positive moment = 0.35 Mo = 280.77 ft.h
	Divide moments between the column and middle strips Negative moments
0	Lolumn-strip negative monent = lz/l= 32/26 = 1.23 afi=0 lho beams)
	0.75 - 428.48 At h= 321.36 At k Middle-strip repotive moment-
	0.25 428.48 = 107.12 At. K Positive Moments
	Lolumn-strip positive moment- Lol Li= 1.23 afi=0 (no beams)
	Oile · 230.72 At · K= 130.4 Ft · H. Middle-strip positive moment -
	0.4.230.72 ft.h = 92, 29 ft.h

	2-15
	Determine moments along gridline 2 between grids B and a
	Compute No-
	No= on la la
	$ \begin{array}{l} \eta_{u:z} & 298.9 \\ \eta_{2:z} & 20+22 \\ \eta_{2$
2	Mo= 298. 4. 23. 29.52 = 746.6 A.h
-III-NO S	Divide No into negative and positive moments:
~	Negative Moment= O. les Mo=485.37+. h
	Positive Moment= 0-35 Mo = 266-3 Ft. H
	Divide Moments between column strips and middle strips
	Negative moments
~	Column-strip negative memorit-
	L=121=23/32=0.72 ofi=0 (no beams)
	0.75 485.3 ft. h= - 363.78 ft. k
	Middle-strip regative moment
	0.25. 485.37. h= -121.33 ft.h
	Positive Moments
	Column-strip positive moment-
	L=/L=0.72 afi=0 (no beams)
	0.6. 261.3 . Pt. K = 156. 78 H. h
	Middle-strip positive moment -
	0.4.266.3 Ft. K= 104.52 Ft. K

2-14 betweenine monents along grid line is between prids Band C Lompute Mo= Mo= que Lz ln2 · qu=298.4 psf L2= 20123= 19.88 ft L= 32-72= 29.5 ft Alo= 298.4. 19.88. 29.5 = 645.31 Ft. K Divide Mc into reguline and positive moments: Negative Moment = - 0.65 Mo = - 419.45 Ft. 4 Positive Thomast= 0.35 Mo= 225.86 Ft. K Divide Moments between column strips and middle strips Negative moments Column-strip repositive moment-L=11= 19.60 132=0.62 at=0 (no blams) 0.75 - 419.45 H. k = - 314.59 H.k Middle-strip negative moments. 0.25 - 419.45 Ft.h= - 104.86 ft.h Positive Menands Column-strip positive Menual Lall= O.62 afi= 0 (no perms) 0.6. 225.00 ft- K= 135.52 ft. h Middle-strip positive moment 0.4.225.86 Ft. H= 90.34 Ft. k


```
2-19
                a = \frac{45}{0.35} \frac{fy}{f_{c}} = \frac{8.29.00,000}{0.85 \cdot 5000 \cdot 10 \cdot 12} = 0.90 \text{ in}
                C = a = \frac{0.98}{0.80} = 1.73in

a = 0.90

a = 0.96
                   B1=0.80
                  1.23 - 3d = 333 is Ø = 0.9
                As= Mu 12,000 (assuming a is constant for
0.9. 60,000. (8.875- 2) all sections)
DAPANAP
               As= 0.0265 Mu
                As, min= 0.0018 bh
                6= 10 ft
                    h= 10in
                As, min = 0.0018 . 10. 10. 12= 2.14in=
                Computer the area of steel along grid B and C
                ts= Mu
Øfyjd
                 d = h \cdot 0.75 - 0.75 - 0.75/2 = 0.125 in
assum j = 0.95
                ts (regid) = 321,34 ft. H. 12,000
0.9. 60,000 .0.95 . B. 125 = 9.25 in2
                a = \frac{1}{125} + \frac{1}{12} = 0.76 \text{ in}
                L = \frac{1}{B_1} = \frac{0.76}{0.80} = 0.95
\frac{1}{B_1} = 0.76
\frac{1}{B_1} = 0.80
               0.95 - 31 = 3.05 : 0=0.9
               As= Mu. 12,000
0.9.40,000. (8.125-0.76)
                As=0.0287 Mu
               Asimin = 0,001864
b= 14,25
                   h= 10 in
               As min = 0.0019 + 14,25 + 12 + 10 = 3.09 in =
```

		2-20
	arid B and C Column Middle	
	Interior Negative Moment Strip Strip	-
	Total strip & ment 1 key a) -32136-107 17	
	Remained to line?) 9.27 507	
	Automation 44 (12) 3.08 3.83	
	Selected Steel, #6@linoc #6@Dino	c
	ts provided [12] 12.32 7.48	
	Grid Bard C Column Middle	
	Inurior rositive runnent Strip Strip	_
Ð	200 UPSI (Anixi Funda anti- Jakot)	-
	Demined be(in2) 3.97 2.45	
×	Minimum As (102) 3406 3.63	
	Selected stul	c
	to provided in 10.56 7.48	
	brid 2 column Middle	
	Intertor Negotive Monsult Stelp Strip	1
	Table Anin Roman Windt - 203 44 - 191 22	
	Readined As (1,2) 9:45 3.22	1
	Minimum HS [112] 2.46 3,29	
	Selected steel , & Calinoc & Galence	
	Lo provided lin? 1012 late	
	teals by how	
	Takener Pressive Brand State	
	Contraction apprinter manager Print State	
	Total Strip Alement Wis-Fr 154-76 104.52	
	Remained Astron 415 2.77	
	minum 45(in7) 2.48 3.29	
	Delieted Stall When Tinoc Velizing	C
	Lingendent 1012 au	-1 ·
	Tell 2 Inthe Louis	T
	Interior Mentive Monest Spile China	
	and and a sub-	1
	total strip house (hip-tel-31454 -104.94	
	Required As (in2), [8,34] 2,78	
	(Minimum to (in2) 2.14 3.29	
	selected steel Whole leiner + 4212 ino	9
	Lasprovalacias 0.0 Laste	2

For 8=0.75 @An=0.54.bah= For 2=0.90 @ Mn= Oulezibiliz DMn=0.58 . 28.282 = 1061 4. ft 7728.3 h. ft V CHANNY .

2-24 alternate System 1: Non-composite steel Loading Live Lood office = 50 + 20=70 psf corridor = 80 pof = used for building flexibility Dead load carpet with pod - 2pst - 15pst - 15pst 321 H Yspaces @ 4.5A=24A Determine Dech size Use composite decking more commonly used with rolled beams and girders. Use light weight concretentor lighter construction Use a topping of 3'ly" for 2 hour fire rating the unshored construction for more economical design Try ISVLR 22 swage 3 span unshared construction -717" > (c'a" Superimposed Load - 97 psf Superimposed Live Load for le'-le" spon - 240 pst 240 >97 Use Valeraft 13 VLR 22 grange deck with 31/4 LW topping

		2~26
	Check Bending	
	Using Zx tables in AISC 14th ed. - Mu = On Mpx	
	W14x30 - Øb Mpx= 177 Ft. k > 165 Ft. W16x31 - Øb Mpx= 203 Ft. k > 168 Ft.	
	Check Shear	
'n	Using 2x tables: -Vie = DV Viex	
Anna	W 14x30-OV Vive = 112 Hips 721 Hips W 16x31-OV Vive = 131 Hips 721 Hips	
	Check Deflection - All 5 1/360	
	ALL = SWILL' 5 5 0.017 32 1726 364 EIX 364 . 2900 . 291) = 143 in
-	4/360= 52.12 = 1.067 4 1143in No 6000	×
	Ireque = 291 - 1.43 = 390 in 4 1.067	
	Using Ix tables	
	W10x35 - Ix= 510 in" > 390 in"	
	Check Beam Weight assumption	
	weight of beam - 35 = 5.38 psf = 5 psi	Fassumed
	Recheck Bending with new loods	
	Looding	
	- 78.8 pst (reduced)	
-		

2-27 Dead Load Deck- 41 psf carpet with pad - 2,457 Superimposed head Load - 15 psf beam self weight allowance - 6 psf Total = leypsf .wu= 1.2(64) + 1.6(78.8) = 202.88 pst WW= 202.88.615 = 1.32 klf Annand shear and Moment Vu= 21.12k Mu= 169 Ftoh Check Bending Using Zx tables W18x35 - 06 Mpx = 249 Koft = 169 Koft V Check Shear Using 2x tables W18x35-8VUNX=159 K> 21,12k V Use w 18x35 beams

	2-32
	Determine OMn and EQn Use Table 3-19 from 2356 144 ed -assume fix= 1000 psi -assume dech is perpend abor -assume 1 week shed for the -assume 1 week shed for the -assume 319 shed
	1+ 四日1 日= 6.50- 5= 6"
anant	$ \begin{array}{l} & 14x24 \& G_{11} = 135 = 135 = 7.85 = 28 \times 2 = 16 \text{studs/beam} \\ & 0 \text{Mn} = 255 \text{ftm} 172 = 992 \\ & 16x24 \& 0 \text{m} = 94 = 94 = 5.58 = 26 \times 2 = 12 \text{studs/beam} \\ & \text{Most} \rightarrow W 16x24 \& 0 \text{m} = 94 = 94 = 5.58 = 26 \times 2 = 12 \text{studs/beam} \\ & \text{economical 0 Mn} = 252 & 17.2 = 952 \\ & \text{Most} W 12x24 \& 0 \text{m} = 198 = 198 = 11.5 = >12 \times 2 = 24 \text{studs/beam} \\ & \text{Most} W 12x24 \& 0 \text{m} = 198 = 198 = 11.5 = >12 \times 2 = 24 \text{studs/beam} \\ \end{array} $
	OMn= 269 17.2 = 10724 W12x22 EQn= 236= 236= 13:3=714 x 2=26 stude/beam Omn= 269 17.2 = 9642
	at Ean Ouss f'e beis
	$betf = \frac{32 \cdot 12}{0} = \frac{46}{12} = \frac{32 \cdot 12}{0} = \frac{48}{0}$ $bin = \frac{5.67 \cdot 12}{2} = 52.02$ $bin = \frac{5.67 \cdot 12}{2} = 52.02$
	beff= 48+45=96in a= <u>96</u> 0.85.4.96= 0.294 - y actual = leso- 0.224 = 6.35=7654 0.85.4.96
	Use yz= (1.5" 2an = 96 => 12 study/beam OMn= 255 ft.H
	Check unshored strength W16+26, QMn = 26274.1
	Wu=1.4(69)(8.67)+1.4(26)=0.074 klf Wu=1.2[(69)(8.67)+26]+1.6(20)(8.67)=1.03 klt - controls Mu= 1.2[(69)(8.67)+26]+1.6(20)(8.67)=1.03 klt - controls Mu=1.2[(69)(8.67)+26]+1.4(262, ft+4) -> 0h for unshored construction

	2-33
	Check net concrete deflection
~	Www.= 69(8.67) + 26= 0.6 24 487
	$\Delta wc = \frac{5[0.624)(32)^4(1726)}{384(29000)[199]} = 1.69 - in$
	Auc max= ====== life in 2 life 2 need to chamber by 1.5" 240 0.8 (1.69)= 25"
	check Live Load Deflection
Chell	WLL= 70,96 . 8.67 = D.615 Hlf
R	ILB @ y= less and 20 m= 96
	ILB= G17
	ALL= 5(0.615)(32)4(1726) =0.811 ;h 384[2900](417)
	ALLMAX = 1 = 32-12 = 1.07 in 70.511 in 2 01
~	Use W16x26 with 12 study per brown for booms
	Determine Wirder Size
	Load
	Live Load - 80 psi (reducable).
	L=Lo (0.25 + 15) = 0.5 Lo
	= 80 (0.25 + 15 124-32-3) = 80 · 01610 = 49.44 psf
	Dead Lord
~	Deck-49 psf carpet with pad - 2 pst Super imposed lead load - 15 pst beam self weight allowance - 5 pst Cirder self weight allowand - 2 pst

.

	2-37
	Octermine design Moment
~	Mu= wel = 238.4.132 = 3357.516- #= 3,36 K. #
	Estimate hs
	As= Mu/4d = 3.34 = 0.168 in=/ff => Provide = 4 bar @ 12" ouch d= 6"-0.76" - 0.5 = 5" (0.2 in=/ff)
2	Check & Mrs Mu
ACTIVITY OF	assume 25524
N	a= 45. P = 0.2 .60 = 0.235" 0.85. FE.b = 0.85 (5) (2)
	$\frac{C=a}{B_1} = \frac{0.235}{0.8} = 0.294''$
	B1=0.85- 9000 (5000-4000)=0.820.45
-	(s=1(d-c)= 0.003 (=-0.299)= 0.048 70.005 → 0=0.9
	Qhn=QA3.fy(d-a/2)=0.9(0.2)(60)(5-0-23)=439K.F+73.34
	Timperature and shrinkage Reinforcement of
	At= 0:0010 b.h=0.0016(12)(6)=0.13in2/At +46 12" o.c. = 0.2 in= 20.13in2
	Crach Control
	$5 \le 15 \left(\frac{40000}{23 Fy}\right) = 2.5 Lc = 15 \left(\frac{40000}{2}\right) = 2.5 (0.75) = 13 \frac{10^{11}}{5} = 2.5 Lc^{-1}$
_	

	2-30
	Determine Beam Size
	assume Fic= 5000 psi assume fy= 60 ksi
	Loads
	Live Lood - 80 psf (reducable)
	L=L0 (0-25 + 15)= 015 L0
nund	=80(0.25 + 15) = 80.0.771-61.68 ppf
	Dead Loads
	51ab= 14-150= 75 pst
	Couper with pod= Zpst Superimposed dead lood= 15pst
~	Total- 42 pot
	Wa= [1-2192] 1.41(11,48) [13+13)= 2.72 484
	$Mu = \frac{1}{10000000000000000000000000000000000$
	Estimate size:
	bid2=20 Mm, b= "/sd
	d3=20(344.1)(=)=20.5in
	in=d+2.51=23 in = 24", 1= 10"
	b.dz=18-21.5== 8320.5 m3
	Compute self neight effects
	WSW= 18-24 2150= 450 plf
	Were 2720 + 1.2 (450)= 3260 Mul 3.26 130332 = 374.9 K. H 20-374.9 = 7498 in 36832 Ob

	2-40
	Top- Asregid = Mu - 260.1 kift = 3.02 in= => 4 # 9 bars
	Check d
	$d = 24 - 1.5^{11} - 3/6^{2} - \frac{1126}{2} = 21.6^{11}$
	Check As, min
	As, min Z 3 FE bid = 3, 15000 . 16-24.6 = 1.37 m2
anamy	$\frac{200 \text{ b-d}}{\text{Fy}} = \frac{200 \cdot 18 \cdot 21.6}{60000} = 1.30 \text{ m}^2$
	As= 4. (1.00)= 4,00 in2
	As > Asimin V
	Check As, max
	Prov = 0.85 B.FC 1000 = 0.85 0.80 5 .0.003 = 0.0243 F8 (0.004 - 60 0.003+0.004
	As, max = 0.10243.18.21.4= 9.45in=
	AS & AS, MAX V
	petermine Mr.
	assume Foz fy
	$a = \frac{A_{5} \cdot f_{4}}{0.85 f_{2} \cdot b} = \frac{4.0 \cdot 60}{0.85 \cdot 5 \cdot 15} = 3.14 \text{ in}$
	$L=a/B_1 = \frac{3.14}{0.80} = 3.93$ in
	Check 25 76 y
	LS= Ex (d-c)= 0.003 (21.a-3.93)=0.013570.005
	@Mn=@As. Fy (d- 9/2)=0.9.4.60. (21.6- 34): 340.54 K.F.
	340,5K.ft 7.260.9 N.ft
	use 4 = 9 @ top

	2-41
	Battern
	As regid = Mu = 179.4 K.ft = 2.09 in 2 => 3+9 hars
	check d
	d= 24-1.5-3/8"-11128= 21.6"
	check As, min
Chelly	Asymin 2 31FCb.d = 315000.18.21.6 = 1.37 in2 Fy 60000
R	1200 bid = 200, 18 216 = 1,3 m2 fy 60000
	A== 3 . 1.00= 3.00 in=
	Asz As, min V
	Check As, max
~ .	p max= 0.85. B. Fr. En 0.004 - 0.55.0.80 - 5 . 0.003
	= 0, 07.43
	AS, MOX=0.0243.18.216= 9.95m=
	AS & As, May V
	Determine Mr.
	assume to zty
	a= As. fy = 3.0.60 = 2.35in 0.65.72.6 0.85.5.18
	$C = \alpha / \beta_1 = \frac{2.35}{0.8} = 2.94$ in
	Check ESTEY
	25=54 (d-c)=0.003 (21.6-2.94)=0.0870.005
	BAN= B As. Fy (d- d/2) = 0.9.3 - 60. (216-23)= 2757 4.4
	27577 Koft 71799 Koft USL 3 = 7 @ bottom

	Determine Shear Reinforcement
	Determine Shear Strongth without stirrups
	Vc= 2 \F' + bw + d = 2 + 15000 + 18 + 21.6/1000 = 54.98 H
	Qun=0.50 VL=0.5.0.75.54(90K=20.62h
	Determine shear strength required by reinforcing
à	Va- 40 la = 3.12.30.33= 47.31-4
Kange	VS= Vu/0 - Vc = 47.31 - 54.90= 8.1K
	VS, mox= 8 VFE bwod = 8 V5000 . 18.21.6 = 219.9 h > VS OH
	Maximum spacing of shear reinforcement
	4 NFE . bw.d = 4. 15000 . 18. 21.6= 10. h > VS
	Sinder min d/z= 10.5" = conducts
	24/1
	Minimum shear reinforcement
	$h_{v_1} \min = \max \left \begin{array}{c} 0.75 \overline{1} \overline{F} \overline{v} \\ F_{v_1} \end{array} \right = 0.15 \overline{1} \overline{5} \overline{0} \overline{0} \overline{0} \overline{0} \\ F_{v_1} \overline{v} \\ \overline{0} \overline{0} \overline{0} \overline{0} \overline{0} \end{array} = 0.17 \overline{2} \overline{n} \overline{1} \overline{1} \overline{0} \overline{0} \overline{0} \overline{0} \\ F_{v_1} \overline{v} \\ \overline{0} \overline{0} \overline{0} \overline{0} \overline{0} \end{array} \right $
	50 bwis = 50.16.10.8 = 0.142 h2 Fut 60000
	2) legs of #3= 2.0.11= 0.22in= 70(172in=
	Design shear kinforcement
	VS= AV. d Fyr => S= AV. Fyr. d = 0.22.60.26 , 44,7"75mm
	USe #3 @ 10" o.c.
	Minimum thickness to control deflections
~	$h = l/2l = \frac{32.12}{21} = 18; 2.9" \le 24"$

r.


```
Top-
As regid = My = 2051 = 3.08 in= > 4#9 bars
Check d
d=24-1.5"- 48"-1.120 = 21.4"
check tomin
 Asymin 2 3112 b.d = 315000 .20.2116 = 1.55112
Fy 60000
           200 bid = 200.20.214 = 1.44 in =
As = 4. 1.00 = 4.00 in=
 ASTAS, min V
Check As, max
 = 0.0243
 As, max=0.0243 120.216= 10.51n2
 ASLAS, Wax V
Determine Mn
 assume For Fy
  a= As.fy = 4.0.60 = 2.82 in
0.85 Feb = 0.85.5.20
   c=a/B1=2.82=3.53in
 Check &g 724
  ES= Eu (d-L)=0.003 (21.5-3.53)=0.015 70.005
 OMn= @Asfy(d=9/2)=0.9.4.60(21.6-22)=363.42 K.A
  36314Kift 726511Kift
 Use 1 # 9 @ top
```

•	7-46
	Battom
	to regid = Mu = 182.3 = 2.12 in 2 = 3 = 9 bors that d
_	$d = 24 - 1.9 - 3/8^{4} - \frac{1129}{2} = 21.6^{4}$
	Check Asimin
Jump .	As, min 2 $\frac{3\sqrt{27} \cdot b \cdot d}{14} = \frac{2\sqrt{5000} \cdot 20(21.6 - 1.52)^2}{40000}$ $\frac{200 \cdot b \cdot d}{14} = \frac{200 \cdot 20(-21.6 - 1.50)^2}{140000}$
N	hs = 3.100 = 3.00 in =
	452 Agmin
~	Check to, may
	pmax= 0.85. B1. FC. 10 =0.55.0.80. 5. 0.002
	= 0.0243
	AS may = 0.0243.20.21.6= 10.51.3
	AS, E AS, MOX V
	Determine Mr.
	assume FS 7 Fy
	a= Asity = 3.0.00 = 2.12h
	$c = a/B_1 = \frac{1}{0.00} = 2.65$ in
~	Check Es > Ey
	Ls= Eu (d-c)= 0.003 (21.4-2.66)= 0.0215 70.005
	@Mn=@As.Fyld-==)=0.9.3.60.121.6-2.25)=173.7
	273,7 Koft 7 182,5 Kift
	use 3×90 bottom

	2-47
	Attermine Shear Reinforcement
	Retermine Shear strength without strengs.
	VL=2 JF2 bw d= 2 15000, 20.21.6/1000= 61.1M
	ØVN=0.58Vc=0.5.0.75.611=22.9.4
	Determine shear strength required by reinforcing
ġ	Vu= wuln = 3.17 · 30.55 = 48.074
Anna	V5= Vu /0= Vc= 40.07 - 61.1= 3k
	V9, may = 8 VFC bund = 8 15000 - 20 = 214, 4 1, 7 V6 =
	Maximum spacing of shear reinspresent
	41FE. bur d= 4. 15000 . 20. 21.4= 122.191 -215
	Smax = min d12=10.6" = controls
~	24"
	Minimum shear Reinforcement
	Au, min = nox 0.75 (Fr - bund = 0.75 - 15000 - 50 - 106) Fyz 60000 =0.1
	50 burs = 50-20-10.5 = 0.18 in= Fyt 60000
	2) Leys of #3=2.0.11:0.22:== 70,19:==
	Design Shear Reinforcement
	VS=Av. of Fyt=> S=Av. Fyt-d=0.22.60.21. =95in
	USE # 3 @ 10" a.c.
	Minimum thickness to control deplections
~	h=l/21= 32017= 10.29 > 2411

7-48 Retermine winder B size assume fic= 5000 psi assume fy= 60 ksi Loads Live Load - 30 pst (reducable) L= Lo (0.25+15] Z 0.5 Lo CARRING =80 (0.25 +14)= 80=0.563= 45.04 pst - 1664 = 100 Dead Loads Stab - 75pst curpet with pod- 2pst superim posed and lood-15pst beam self weight - 24 pst total-119 was 1.2.(18)-1.6(45.04)= 213.67 pst Pu= 213.67(13)(32)= 88.9 h Mu= Plan= 88.9.125-201540.8 4. Ft -12= 6419. K. Ft Estimate Size lo-d= 20 Mu, b= 20in 20=20.1449 d=255 in-th=20 in b.d2= 20-25.52= 13005113 compute self meight erroits Wow = 20.25 × 150 = 503 plf Pu= 88.9 H+ 0.583.26=104.1 K Mus 10411-22-22) = 23332++ 20.633.3=12606113 7136054

*

	2-50
	Check As, min
~	Asimin 2 31FC-b.d = 315000.20.25.4 = 1.81in2 Fg 60000
	200 b.d = 200.20.25.6 = 1.7110= ft 60,000
	Ag= 4.1.00 = 4in2
	As= As, min V
(DNB)	Check to, max
N.	phox=0.85 B1 F2 . En 0.009 = 0.51.0.50.5. 0.205 = 0.0243
	As, max=0.0243.20.25.6=12.412
	hs they max V
	Determine Mr.
~	assume is 2 fy
	0= As Fu = 40.60 = 2.82in 0.65. Find 0.65. 5.20
	$L = \alpha / B_1 = \frac{2.82}{0.8} = 3.53$ in
	Check Es Thy
	Es= Eu (d-c)= 0.003 (25.6-3.55)=0.018870.005 2153
	Q Mn=@ A= Fyld-9/2)= 0.9.4.60.(25.6.2.2)=435.44.4
	435.4 Kitt = 397.7 hoft
	use y = y@ top
- · ·	

	2-0	51
	Bottom	Color I
0	As regid = Mu = 273. 41 = 3.12 in= -> 4 = 9 bars	
-	check As, min	
	As, min Z $\frac{3\sqrt{f_c} \cdot b \cdot d}{f_y} = \frac{3\sqrt{5000} \cdot 20 \cdot 25 \cdot b}{(e0,000)} = 1153 \cdot n^2}$	
	$\frac{200 \text{ b.d}}{F_{\text{V}}} = \frac{200 \cdot 20 \cdot 25 \cdot 6}{60,000} = 1.3 \text{ b.s}^{2}$	
(The	A== 4.1.00 = 4.00 in=	
R	As = Asimin	
	Check As, max	
	p max=0.85 · p1 · f2 · 440.001 · 0.81 · 0.8 0.003 = 0.0243 · Fy Europoor	-0103
	to, max = 0.0243 = 20 - 25.6 = 12.44 in=	
~	to the, wax V	
_	Determine Mn	
	assume forty	
	a= <u>As.Fy</u> = <u>4.0.60</u> = 2.82 m 0.55.Fc.b = 0.55.5.20 = 2.82 m	
	$C = \alpha/B_1 = \frac{2.82}{-2} = 3.55$ in	
	Check ESTEY	
	$\frac{L_{5} = \frac{1}{2} (d - c) = 0.003 (25.4 - 2.53) = 0.0185 7 0.005}{2.53}$	
	@Mn=@Asfyld-92)=0.911/10/1051-2=)=4350	14.
	435.9 4.ft 7 273.41 K.ft	
	Use 4 # 90 bottom	

	2-67
"cricinogé	Determine shear Reinforcement
	attermine shear strongth without stirnups.
	Vc=2. Fic bw.d=2. 19000, 20. 25.6/1000= 72.44
	@UN=0.5 @Vc=05.0.75.72.4h=27.24
	Determine shear strength required by reinforcing
	Vu= wulp = 7:39 + 24:33 = 89,9 4
	V5=Vu/0-Vc= 89.972.9= 47.5h
	VS, Max= 8 (F2 bw.d= 8 v5000 -00 232 = 289, 4 2 VS or
	Maximum spacing of shear reinspression .
	41F2-bw.d=415000.20.226=144.8H7V50H
	Sway = min d/2= 12.0" + controls
~	24"
	Minimum shear reinforcement
	Au min= max 0.75 152 - but 5 = 0.75.1500 - 20. 12.8 = 0.2264 Fyt 60000
	50 burs = 50 - 20 - 12.0 = 0.213 m2 Fyr 60000
	(3) Legs of # 3= 3.0.11= 0.33in = 70.226in=
	Design Shear Reinforcement
	VS=An.d figt= S= Avifyted = 0.33.60.2500 = 10.627 in
	Use (3) Lige = 3 @ 10" orc
	Minimum Thickness to control destections
	$h = \frac{L}{21} = \frac{24 \cdot 12}{21} = \frac{14.85'' \cdot 28''}{21}$

Appendix A - Floor Plan with Typical Bay and Columns

Typical bay is outlined in red. Interior and exterior columns are outlined in green.